Obese Mice Lacking Inducible Nitric Oxide Synthase Are Sensitized to the Metabolic Actions of Peroxisome Proliferator–Activated Receptor-γ Agonism
نویسندگان
چکیده
OBJECTIVE Synthetic ligands for peroxisome proliferator-activated receptor-gamma (PPAR-gamma) improve insulin sensitivity in obesity, but it is still unclear whether inflammatory signals modulate their metabolic actions. In this study, we tested whether targeted disruption of inducible nitric oxide (NO) synthase (iNOS), a key inflammatory mediator in obesity, modulates the metabolic effects of rosiglitazone in obese mice. RESEARCH DESIGN AND METHODS iNOS(-/-) and iNOS(+/+) were subjected to a high-fat diet or standard diet for 18 weeks and were then treated with rosiglitazone for 2 weeks. Whole-body insulin sensitivity and glucose tolerance were determined and metabolic tissues harvested to assess activation of insulin and AMP-activated protein kinase (AMPK) signaling pathways and the levels of inflammatory mediators. RESULTS Rosiglitazone was found to similarly improve whole-body insulin sensitivity and insulin signaling to Akt/PKB in skeletal muscle of obese iNOS(-/-) and obese iNOS(+/+) mice. However, rosiglitazone further improved glucose tolerance and liver insulin signaling only in obese mice lacking iNOS. This genotype-specific effect of rosiglitazone on glucose tolerance was linked to a markedly increased ability of the drug to raise plasma adiponectin levels. Accordingly, rosiglitazone increased AMPK activation in muscle and liver only in obese iNOS(-/-) mice. PPAR-gamma transcriptional activity was increased in adipose tissue of iNOS(-/-) mice. Conversely, treatment of 3T3-L1 adipocytes with a NO donor blunted PPAR-gamma activity. CONCLUSIONS Our results identify the iNOS/NO pathway as a critical modulator of PPAR-gamma activation and circulating adiponectin levels and show that invalidation of this key inflammatory mediator improves the efficacy of PPAR-gamma agonism in an animal model of obesity and insulin resistance.
منابع مشابه
Nitric Oxide Synthase Gene -Dependent Repression of the Inducible γ Peroxisome Proliferator-Activated Receptor
متن کامل
Inhibition of IFN- -Mediated Inducible Nitric Oxide Synthase Induction by the Peroxisome Proliferator-Activated Receptor Agonist, 15-Deoxy- -Prostaglandin J2, Involves Inhibition of the Upstream Janus Kinase/STAT1 Signaling Pathway
متن کامل
Modulatory Effect of Pioglitazone on Sperm Parameters and Oxidative Stress, Apoptotic and Inflammatory Biomarkers in Testes of Streptozotocin-Induced Diabetic Rats
Background and Aims: Diabetes mellitus causes testicular damage by increasing oxidative stress and inflammation. In the present study, modulation of oxidative stress by pioglitazone, a synthetic ligand of peroxisome proliferator-activated receptor-γ, was examined in testis of streptozotocin-induced diabetic rats. Materials and Methods: Diabetes was induced by a single dose of streptozot...
متن کاملThe effect of Nordic training on plasma levels of Peroxisome proliferator-activated receptor-γ coactivator 1-α and Sirtuin 6 in elderly women with diabetes
Introduction: Nordic walking training has many benefits in improving the condition of the disabled elderly. Then the aim of this study was to evaluate the effect of Nordic walking training on plasma levels of PGC1α and SIRT6 in elderly women with diabetes. Materials and Methods: In this quasi-experimental study, 27 elderly women (age: 65.45±2.70 years) with type 2 diabetes were selected and ran...
متن کاملEmodin, A Chinese Herbal Medicine, Inhibits Reoxygenation-Induced Injury in Cultured Human Aortic Endothelial Cells by Regulating the Peroxisome Proliferator-Activated Receptor-γ (PPAR-γ) and Endothelial Nitric Oxide Synthase (eNOS) Signaling Pathway
BACKGROUND Ischemia-reperfusion injury is associated with vascular dysfunction. The aim of this study was to investigate the role of emodin, a Chinese herbal medicine, in hypoxia-reoxygenation injury in cultured human aortic endothelial cells (HAECs) and its effects on the expression of the peroxisome proliferator-activated receptor-γ (PPAR-γ) and endothelial nitric oxide synthase (eNOS) signal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Diabetes
دوره 57 شماره
صفحات -
تاریخ انتشار 2008